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1 Orthotropic Masonry 2D
The material model Orthotropic Masonry 2D is an elasto-plastic model, which in addition allows for
material softening, possibly different in both local x and y directions of a surface, under plane-stress
condition, especially suited to model (unreinforced) masonry walls. The total strain tensor 𝜺 is
additively decomposed into the elastic and inelastic parts 𝜺 = 𝜺el + 𝜺p. The damage is assumed
to follow a smeared crack approach, when the material remains continuum even after damage.

1 Tension

In tension, exponential softening is considered under a Rankine-type yield hypothesis, namely,
the yield surface Ft is described as

Ft(𝝈, 𝜅) =
(𝜎x − 𝜎̄t,x) + (𝜎y − 𝜎̄t,y)

2
+ √(

(𝜎x − 𝜎̄t,x) − (𝜎y − 𝜎̄t,y)
2

)
2

+ 𝛼𝜏 2
xy, (1.1)

where 𝛼 controls the amount of shear stress contribution to failure1, and the back stresses 𝜎̄t,i
follow an exponential softening law, see Figure 1.1, described by

𝜎̄t,i(𝜅) = ft,i exp(−ft,i
ℎ
Gt,i

𝜅) , (1.2)

where ℎ =
√
A is the equivalent length of the finite element of area A, and Gt,i the specific fracture

energy (per unit area), i.e., the area under the 𝜎̄–𝜅 graph.
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Figure 1.1: Different tensile stress – equivalent strain diagram for x and y directions of a plate.

The plastic behavior is driven by the maximum principal inelastic strain

𝜅̇ = 𝜀̇p,1 =
𝜀̇p,x + 𝜀̇p,y

2
+

1
2

√(𝜀̇p,x − 𝜀̇p,y)2 + (𝛾̇p,xy)2 . (1.3)

2 Compression

The compression behavior is described by isotropic parabolic hardening (same inelastic strain
𝜅p at maximum compressive stress) followed by anisotropic parabolic / exponential softening
controlled by the compressive fracture energies along the material axes, cf. Figure 1.2, driven by a
Hill-type yield criterion—a rotated centered ellipsoid in the plane stress space (𝜎x, 𝜎y, 𝜏xy)—more
precisely,

1 If 𝜏u denotes pure shear stress, then actually 𝛼 = ft,xft,y/𝜏 2
u . For 𝛼 = 1, the yield criterion Ft(𝝈, 0) = 𝜎1 equals the first

principal stress.
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Fc(𝝈, 𝜅) =
𝜎 2
x

𝜎̄2
c,x

+
𝛽𝜎x𝜎y

𝜎̄c,x𝜎̄c,y
+

𝜎 2
y

𝜎̄2
c,y

+
𝛾𝜏 2

xy

𝜎̄c,x𝜎̄c,y
− 1, (1.4)

where the additional parameters 𝛽 , 𝛾 are related to the coupling between the normal stresses
(mathematically, rotation of the yield surface around the shear axis) and the shear contribution in
compression, respectively.2
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Figure 1.2: Compressive hardening/softening for x and y directions.

An associated flow rule with hardening/softening hypothesis—related to the specific inelastic
work—is considered, namely,

𝜅̇ =
1

𝜎̄c,x𝜎̄c,y
𝝈⊤𝜺̇p. (1.5)

1 Material parameter identification

In addition to an orthotropic linear elastic material, there are 7 strength parameters (ft,x, ft,y, fc,x,
fc,y, 𝛼, 𝛽 , 𝛾 ) and 5 inelastic parameters (Gt,x, Gt,y, Gc,x, Gc,y, 𝜅p) required for theOrthotropicMasonry
2Dmaterial model in RFEM 5, see Figure 1.3.

Figure 1.3: Input parameters for Orthotropic Masonry 2D.

2 Analogously to the parameter 𝛼 for tension, there is 𝛾 = fc,xfc,y/𝜏 2
u , while, if f45∘ is the ultimate strength of the material in

biaxial compression, then the coupling between normal stresses reads as 𝛽 = (1/f245∘ − 1/f2c,x − 1/f2c,y) fc,xfc,y.
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As described in [1], one possible way to obtain these elastic parameters is from the following
proposed uniaxial tension/compression tests, see Figure 1.4, and biaxial tests, see Figure 1.5. When
performed in a displacement controlled environment, the fracture energies and compressive peak
strain are also identifiable.
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Figure 1.4: Uniaxial masonry tests.
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Figure 1.5: Biaxial masonry tests.

Under such conditions 𝛼, 𝛽 , 𝛾 read

𝛼 =
1
9

(1 + 4
ft,x
fu�

) (1 + 4
ft,y
fu�

) , (1.6)

𝛽 = (
1
f2u�

−
1
f2c,x

−
1
f2c,y

) fc,xfc,y, (1.7)

𝛾 = [
16
f2u�

− 9(
1
f2c,x

+
𝛽

fc,xfc,y
+

1
f2c,y

)] fc,xfc,y. (1.8)

A typical yield surface for the proposed anisotropic Rankine–Hill-type failure cirterion looks as in
Figure 1.6.
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Figure 1.6: Yield surface with iso-shear contour lines and material parameters for Orthotropic Masonry 2D.
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