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1 Orthotropic Masonry 2D

The material model Orthotropic Masonry 2D is an elasto-plastic model, which in addition allows for
material softening, possibly different in both local x and y directions of a surface, under plane-stress
condition, especially suited to model (unreinforced) masonry walls. The total strain tensor ¢ is
additively decomposed into the elastic and inelastic parts € = ¢, + €,. The damage is assumed
to follow a smeared crack approach, when the material remains continuum even after damage.

1 Tension

In tension, exponential softening is considered under a Rankine-type yield hypothesis, namely,
the yield surface F, is described as
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where o controls the amount of shear stress contribution to failure'!, and the back stresses Oy,
follow an exponential softening law, see Figure 1.1, described by

h
o i(K) = fjexp <—ft,iG’i> ) (1.2)
t,i

where h = \/Aiis the equivalent length of the finite element of area A, and G, ; the specific fracture
energy (per unit area), i.e, the area under the -+ graph.

K
ﬁgure 1.1: Different tensile stress — equivalent strain diagram for x and y directions of a plate.
The plastic behavior is driven by the maximum principal inelastic strain

h=éy, = @ + %\/ Epx—Ep,)2 + (Boy)? - (13)

2 Compression

The compression behavior is described by isotropic parabolic hardening (same inelastic strain
K, at maximum compressive stress) followed by anisotropic parabolic / exponential softening
controlled by the compressive fracture energies along the material axes, cf. Figure 1.2, driven by a
Hill-type yield criterion—a rotated centered ellipsoid in the plane stress space (oy, 0, Txy)—more
precisely,

' If 7, denotes pure shear stress, then actually o = ft,xft,y/Tuz' For a = 1, the yield criterion F,(o,0) = o4 equals the first
principal stress.
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where the additional parameters 3, v are related to the coupling between the normal stresses
(mathematically, rotation of the yield surface around the shear axis) and the shear contribution in
compression, respectively.?
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ﬁgure 1.2: Compressive hardening/softening for x and y directions.

An associated flow rule with hardening/softening hypothesis—related to the specific inelastic
work—is considered, namely,
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1 Material parameter identification

In addition to an orthotropic linear elastic material, there are 7 strength parameters (fnx, ft’y, fc’x,
fc7y, «, 3,7) and 5 inelastic parameters (GLX, G, G Gc7y, /{p) required for the Orthotropic Masonry

ty’ Sox!
2D material model in RFEM 5, see Figure 1.3.
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ﬁgure 1.3: Input parameters for Orthotropic Masonry 2D.

Analogously to the parameter « for tension, there is v = fc,xfc,y/Tuzl while, if f4s. is the ultimate strength of the material in
biaxial compression, then the coupling between normal stresses reads as 3 = (1 /fisg — 1/fc2YX — 1/fcz)y) fexfey-
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As described in [1], one possible way to obtain these elastic parameters is from the following
proposed uniaxial tension/compression tests, see Figure 1.4, and biaxial tests, see Figure 1.5. When
performed in a displacement controlled environment, the fracture energies and compressive peak
strain are also identifiable.
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ﬁgure 1.5: Biaxial masonry tests.

Under such conditions «, 3, -y read

f, f,
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A typical yield surface for the proposed anisotropic Rankine-Hill-type failure cirterion looks as in
Figure 1.6.

ﬁgure 1.6: Yield surface with iso-shear contour lines and material parameters for Orthotropic Masonry 2D.
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